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Black hole entropy

A mystery of modern physics: SBH = A/4

Entropy given by area in Planck units. One bit per Planck area.

Bekenstein-Hawking: T ∼ R−1 , R ∼M

SBH ∼

∫
dQ
T
∼

∫
R dM ∼ R2



The meaning of entropy

Entropy = log of number of microstates consistent with some
macro condition.

S ∼ ln {# of microstates N}

Typically, entropy is extensive:

ln (cV) = V ln c

The dimensionality of the Hilbert space describing a volume V
is dimH = cV (c = 2 for qubit). S ∼ number of d.o.f.

• coarse graining
• loss of information



’tHooft bound

Exclude states whose energies are so large that they would have
already caused gravitational collapse: E < R (Hoop Conjecture)

Compute entropy; dominated by thermal configurations at
large V:

S ∼ T3R3 , E ∼ T4R3

E < R then implies

T ∼ R−1/2
→ S < R3/2

∼ A3/4

S < A3/4

Note: Black hole density decreases with size. For any constant
density E(R) > R for sufficiently large R!



’tHooft bound

Ordinary matter satisfies S < A3/4. What does this say about
black holes, which have S ∼ A? There is an entropy gap!

Entropy S

Area A

The number of ways to
form a given black hole
from a compact region
of ordinary matter is
much smaller than the
number of possible
black holes of that
mass.



exp A distinct black holes?

r ~ R ~ M

tim
e

r ~ M3 » M

There are exp A distinct states of
Hawking radiation:

S =

∫
dQ/T ∼

∫
dM M ∼ A

A black hole which slowly eats
in-coming radiation can saturate
S ∼ A.



Negative binding energy

Consider N particles of mass m. In GR there is negative binding
energy ≡ ∆ . The ADM mass can be less than Nm:

M = Nm − ∆

In fact, one can achieve

M
Nm

=
Nm − ∆

Nm
� 1 .

This suggests that entropy to mass ratios can be very high. If
the object becomes a black hole its area will scale as A ∼M2.

Can the entropy equal or exceed A?



Curved space

Goal: Generalize ’tHooft analysis to curved space.

Construct configurations with large proper volume (fixed
entropy density; large total entropy) but small ADM mass.

Configurations will be static (macroscopic moment of time
symmetry; time reversal invariance) and satisfy Einstein
constraints.

They comprise good initial data (matter + metric) for evolution
using Einstein equations.



Curved space

Consider spherically symmetric, but not necessarily static,
distributions of matter

ds2 = −gtt(r, t)dt2 + grr(r, t)dr2 + r2dΩ2 . (1)

Energy within radius r:

M(r) = 4π
∫ r

0
dr′ r′ 2ρ(r′) , (2)

where ρ(r) = ρ(r, t0) is the proper energy density (i.e., as seen
by a stationary observer at r) on the initial time slice t = t0.

ADM mass: M ≡M(R), where R is radius
of object.



Curved space

Define
ε(r) = 1 −

2M(r)
r

, (3)

Then, assuming the matter to be initially at rest w.r.t. our (r, θ, φ)
coordinates, the metric on that slice is fully determined by

grr(r, t0) = ε(r)−1 . (4)

Each choice of ρ(r) yields a good initial configuration.



Collapse

Each configuration
satisfies the Einstein
constraints and, as we
will see, collapses to
form a black hole.

Each leads to a distinct
black hole internal
state; our goal is to
count them.

black hole singularity

t = t_0

t



Curved space

Entropy: assume covariantly conserved entropy current
jµ : jµ;µ = 0. Stokes theorem:

S Σ =

∫
Σ

d3x
√
γ s = constant , (5)

where integral is over a constant time slice Σ with induced
metric γ and unit normal nµ ∼ (∂t)µ.

s = − jµnµ is the proper entropy density (as seen by a stationary
inertial observer). In our coordinates, s(r) = j0(r, t0)gtt(r, t0)1/2.

Total entropy on the initial time slice t0 is

S = 4π
∫ R

0
dr r2ε(r)−1/2s(r) . (6)



Curved space: key formulae

Total ADM mass (includes negative binding energy):

M ≡M(R) = 4π
∫ R

0
dr′ r ′2ρ(r′) ,

Total entropy: ( ε(r) = 1 − 2M(r)/r )

S = 4π
∫ R

0
dr r2ε(r)−1/2s(r) .

Both ρ(r) and s(r) are proper densities (as seen by stationary
inertial observer).

E.g., thermal photons: ρ(r) ∼ T(r)4, s(r) ∼ T(r)3 or s(r) ∼ ρ(r)3/4.

Maximize S while holding M fixed.



Curved space: monster

The proper volume of our object is

Vp = 4π
∫ R

0
dr r2ε(r)−1/2 . (7)

Fixed ADM mass (surface area); potentially infinite proper
volume and total entropy, keeping entropy and energy densities
finite.

Trick: adjust ε(r) = 1 − 2M(r)/r ≈ 0
in some large region.

See also Sorkin, Wald and Zhang
(1981)



Entropy extrema

Hold ADM mass M fixed, extremize entropy S.

TOV

monsters

S



Example monster: blob

Suppose: small core of radius r0, mass M0 and density profile

ρ(r) = ρ0

(r0

r

)2
(r0 < r < R) . (8)

Then
M(r) = M0 + 4πρ0r2

0(r − r0) . (9)

Let 8πρ0r2
0 = 1 so that

ε(r) = ε0

(r0

r

)
, (10)

where ε0 = 1 − 2M0/r0.



Example monster

Total entropy (neglecting the small core region r < r0):

S ∼ 4π
∫ R

r0

dr r2
( r
r0ε0

)1/2
ρ3/4

∼
ρ3/4

0 r0
√
ε0

R2 . (11)

1) Area scaling has been achieved.

2) S can be made as large as desired by taking ε0 small.

3) Can obtain faster than A scaling by taking ε(r) to approach
zero faster than 1/r.



Escape angle and the fate of monsters

Trapped surface? No.

Horizon? Eventually, yes.

Future of monster interior does not include future null infinity
I

+

Critical escape angle ≡ θc.
θ2

c ∼ ε(r) = 1 − 2M(r)/r.



Escape angle and the fate of monsters

All monsters must have ε ≈ 0 (and θc ≈ 0) in large subregion.

Hence, will inevitably evolve into a
black hole: mean-field analysis
shows net inward energy flow.

Will also evolve into a black hole if time-reversed.

So, cannot form from good initial data (without intervention):
requires initial white hole singularity.



Isolated monster

Matter ejected from
white hole reaches
turning point (object is
gravitationally bound)
and recollapses into
black hole.

Note time-reversal
invariance.

black hole singularity

white hole singularity

t = t_0

t



Monster spacetime
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Build a monster

Assume arbitrarily advanced civilization, constraints only from
fundamental physics. Can one construct a monster?

Buildability condition: require configuration to be no closer
than a thermal wavelength λ ∼ ρ−1/4 from its Schwarzschild
radius.

rε(r) > r − 2M(r) > λ

implies the bound S < A.

Can’t build monsters with entropy S > A.



Entropy gap?

Entropy S

Area A

Perhaps this closes the
entropy gap?

Most entropic pre-black hole
state is either a slightly
smaller black hole, or a
monster state with entropy
A.



Build a monster: tunneling

Initial data: collapsing spherical shell of energy, ADM mass M,
other quantum numbers Q = J = 0.

Same quantum numbers as monster.

There must be a nonzero probability for our initial data to
evolve (tunnel) into the monster state, even those with S >> A!

Otherwise, ∃ new selection rule forbidding certain transitions
between states with same quantum numbers.



How big is the Hilbert space for gravity?

Let Φ = matter fields; g = geometry or metric.

(Φ, g) ∈ H

Good semiclassical evidence for

dimH >> exp A



Black hole entropy and microstates

It is claimed that black hole entropy counts the number of
possible microstates of the hole (Strominger and Vafa):

# of microstates ∼ exp A/4

This is problematic if tunneling to monster states is allowed: a
monster-like configuration might lurk behind the horizon, with
the possibility of many more microstates.

• Hyper-entropic states?

• Remnants?



AdS/CFT

It is plausible that monster configurations exist in AdS.

Can they be described by the boundary CFT? Not enough
degrees of freedom!

Related discussion: inflationary pocket universes in AdS/CFT

Freivogel, Hubeny, Maloney, Myers, Rangamani and Shenker,
JHEP 0603:007,2006.

Conclusion: new selection rule in quantum gravity!



Einstein-Rosen gluing
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Conclusions

Using curved space, one can (mathematically) construct objects
with more entropy than a black hole of equal mass.

Implications for black hole entropy, holography, AdS/CFT.

Whether one can, in principle, physically construct such objects
is unclear.


